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1.1 Introduction 

 

The notions of quasi-proximities and quasi-uniformities inevitably arise in literary works dealing with 

nonsymmetrical metrizable spaces. The idea of a bitopological space originated from Kelly's finding that two 

distinct topologies on a non-empty set X were produced by the asymmetric behavior of quasipseudo metric 

and its conjugate when studying nonsymmetrical spaces, which are also called quasi-metric spaces. Regarding 

this, Kelly's groundbreaking work [28] was an important step forward because it presented and explored the 

idea of a bitopological space. Consequently, quasi-metric, quasi-uniform, or quasi-proximity spaces are the 

original contexts for the idea of bitopological spaces. This provided a framework for investigating non- empty 

sets in relation to two distinct topologies. The phenomenon of bitopological spaces emerged from this 

foundational idea and has since attracted the attention of numerous modern topologists, who have contributed 

to the field's growth by developing new ideas like pairwise connectedness, pairwise compactness (and its 

invariants like pairwise Lindelöf), pairwise countable compactness, pairwise paracompactness, and several 

pairwise variants of other covering properties and separation axioms. We are aware that, on occasion, many 

other separation axioms have been proposed and investigated for topological and bitopological spaces. 

Urysohn provided the initial comprehensive analysis of separation axioms on topological spaces. 

Additionally, the separation axioms were discussed in greater depth by Van and Freundenthal. A new axiom 

of separation between T0 and T1 was proposed by Aull. Separation axioms for topological and bitopological 

spaces have been proposed by several mathematicians in recent years, including Ekici Arar Mukharjee 

Wianwiset et al., Khalaf et al. Rao, and Narasimhan Gowri and Rajayal. It was for this reason that we proposed 

a novel separation axiom for a bitopological space spanning the interval between the sets T0 and T1. 

 

The term "bitopological space" will be used throughout this chapter to refer to a nonempty set X that has two 

non-identical topologies, 1 and 2. A subset of X's closure and interior are meaningful in a broad sense. 

The new pairwise TD∗ axiom,which we introduce at the beginning of the chapter, is a separation axiom. 

Afterwards, we present a novel topology on a bitopological space (X, 1, 2 ) as a topology that encompasses 

all subsets of X that are either closed in both topologies or open in both. This subset is then rendered closed 

in the new topology. We refer to the new topological space that is generated by the set X and its topology as 

(X, R). At last, the relationship between the separation axiom TD∗ and the topology R is proven. 

1.2 REVIEW OF LITERATURE 

Mohsen, Salim. (2022). In this paper, we introduce a novel class of compact spaces and investigate their 

characteristics; specifically, we focus on the #RG-compact space in topological spaces onto which the # rg-

open set is superimposed, while simultaneously revising some compact space theorems. 

 

Bayhan, sadık (2021) While writing on intuitionistic topological space, the second author first brought the 

idea up. This paper's goal is to prove that category of intuitionistic topological spaces and continuous 
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mappings and category of bitopological spaces and pairwise continuous mappings are natural functors. We 

derive certain links between these and previously specified ideas after applying these functors to generalize 

bitopological notions of separation to intuitionistic topological spaces. 

 

Roy, B. & Noiri, T.. (2021). The study in this work focuses on γµ -open sets and γµ - closed sets in a GTS 

(X, µ), where γµ is an operation from µ to P(X). Typically, groups of γµ -open sets are less numerous than 

groups of µ-open sets. Here we also establish the conditions under which they are equal. The discussion has 

focused on a few characteristics of these sets. We also define and talk about the features of some closure-like 

operators. The connection between closure operators of comparable types on the GTS (X, µ) has been proven. 

The novel closure-like operator is shown to be a Kuratowski closure operator under certain conditions. With 

the aid of this recently established closure operator, we have also created a special kind of closed sets called 

γµ-generalized closed sets and gone over some of its fundamental characteristics. We have presented a few 

weak separation axioms and gone over their characteristics as an example of an application. At last, we have 

demonstrated a few preservation theorems of these broad ideas. 

 

Al-shami, Tareq. (2021). No soft topological space generated by a soft information system can be anything 

other than soft compact, as is well known. We present novel varieties of soft compactness on finite spaces 

and explore their applications in information systems by integrating soft compactness with partially ordered 

sets. We begin by introducing the concept of monotonic soft sets and defining its key characteristics. 

Secondly, we define ordered soft compact spaces and monotonic soft compact spaces and demonstrate their 

interrelationships through examples. We provide a detailed description of each of them by utilizing the finite 

intersection property. Additionally, we investigate certain features linked to finite product spaces and certain 

soft ordered spaces. Additionally, we explore the circumstances in which these ideas are maintained between 

the soft topological ordered space and its parametric topological ordered spaces. Finally, we present a method 

based on the idea of ordered soft compact spaces that may anticipate the information system's objects' missing 

values. 

1.3 A Separation Axiom Between Pairwise T0 and Pairwise T1 

 

X is a non-empty set with two topologies, and we begin this section by introducing a new separation axiom 

on a bitopological space (X, 1, 2). 

Definition 6.2.1 You can discover an open set Ui in i that meets the condition: Ui - 

{x} = P1 ⋂ P2 where Pi ∈ i and x ∉ P1 ⋴ P2 for every i ∈ {1, 2}. This means that the bitopological space 

is pairwise TD∗ 

The following is a bitopological space (X, 1, 2) equivalent of the pairwise TD∗ separation axiom: 

 

Definition 6.2.2 For each element x in X, there must be an open set Ui ⋂ (1 cl{x} ⋃ 

2 cl{x}) = {x} such that for every i in {1, 2} for a bitopological space (X, 1, 2) to be pairwise TD∗. 

 

As can be seen below, both interpretations of the TD∗. pairwise axiom are equivalent. 

 

(X, 1, 2) is a topological space that meets the requirement stated in Definition 

6.1.1. If x is an element of X, then for every i in the set {1, 2}, there is a set Ui that contains x. We may 

express Ui - {x} as P1 ⋂ P2, where Pi is an element of i and x is an element of P1 that is not in P2. 

 

Let y ∈ P1 ⋂ P2. Consequently, P1 and P2 are open sets in 1 and 2 that contain y, respectively. 
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No Pi also does not contain x. 

 

Pi ⋂ i cl{x} = ϕ is our first assertion. The sentence can be paraphrased as: "Let z ∈ 

Pi and z ∈ i cl {x}." A subset of i that contains z also contains x. 

Specifically, there is a contradiction (x ∈ Pi) for all i ∈ {1, 2}. Therefore, it follows that Pi ⋂ i cl{x} = ϕ. 

It follows that Pi ⋂ i cl{x} = ϕ ⟹ (P1 ⋂ P2) ⋂ (i cl{x} ⋃j cl{x}) = ϕ for all i ∈ 

{1, 2} ⟹ (P1 ⋂ P2) ⋂ (i cl{x} ⋃j cl{x}) = ϕ ⟹ Ui ∂ (i cl{x} ⋃j cl{x}) = {x}. 

 

On the other hand, if Ui is a subset of the set consisting of functions cl{x} and cl{j}, then {x} is also a 

subset of Ui. Then, X - (Ui - {x}) = (X - Ui) ⋃ {x} = (X - Ui) ⋃ (Ui 

⋂ (i cl{x} ⋃j cl{x})) Lastly, X - (Ui - {x}) = (X - Ui) ⋃ {x} = (X - Ui) ⋃ (Ui ⋂ 

(i cl{x} ⋃j cl{x})) = X ⋂ ((X – Ui) ⋃ (i cl{x} ⋃j cl{x})) = ((X – Ui) ⋃ (i cl{x} ⋃j cl{x})) = 

((X – Ui) ⋃ (i cl{x}) ⌃j cl{x} = F1 ⋃ F2 in the case where X 

- Fi ∈ i and x ∈ F1 ⋂ F2. Similarly, ⟹ Ui - {x} = P1 ⋂ P2 in the case where Pi ∈ 

i and x ∉ P1 ⋃ P2. 

 

The pairwise TD∗ axiom displays a number of distinctive features, including: 

 

The 6.2.3 Theorem The equality T1 ⟹ TD∗ ⟹ T0 holds in a bitopological space (X, 

1, 2). 

 

The evidence. The bitopological space (X, 1, 2) can be thought of as pairwise T1. Every singleton in a 

paired T1 bitopological space is closed in both topologies, meaning that for any x in X, 1 cl{x} ⋂2 cl{x} 

= {x}. X - {x} is 1 open and 2 open, while Ui - {x} is i open for every i neighbourhoods of x in Ui. 

Define P1 as Ui - {x} and P2 as X - {x}. Therefore, according to the pairwise TD∗ axiom, Ui - {x} 

= P1 ⋂ P2. 

 

Presently, think of the bitopological space as (X, 1, 2) pairwise TD∗. Assume that X has two unique 

elements, x and y. In order to demonstrate that (X, 1, 2) fulfills the pairwise T0 axiom, we prove that both 

x and y have neighbourhoods in their respective topologies that do not contain each other. Based on the first 

postulate of pairwise TD∗, for any x ∈ {1, 2}, there is a neighborhood Ui of x such that Ui - {x} = P1 ⋂ P2, 

where each Pi is open in i and none of them include x. We can conclude that y is a subset of Ui for all i in 

the set {1, 2}. P1 and P2 are 1 and 2 

neighborhoods of y that do not contain x, respectively, if y is a subset of Ui for some i 

∈ {1, 2}. Consequently, (X, 1, 2) is a pairwise T0. 

 

Conclusion 6.2.4 The resulting set of every element in a paired TD∗ bitopological space is closed in both 

topologies. 

 

The evidence. The derived set of {x} in the topology i ∀ i ∈ {1, 2} is denoted by ({x}i ′) in a pairwise TD∗ 

bitopological space (X, 1, 2). 

In a bitopological space (X, 1, 2), we assert that if y is an element of i cl({x}i ′), then y is either equal to 

x or an element of ({x}i ′). Every i neighborhood Ui of y overlaps {x}i ′ since y is in set cl({x}i ′). Given that 

p is a subset of {x}i ′ ⋂ U, and that Ui is the i-th neighborhood of y, we can deduce that Ui contains x and 
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that y is either equal to x or a subset of ({x}i ′). 

 

Next, we need to show that the set i cl({x}i ′) does not contain x for every i in {1, 2} in order to establish 

that the derived set of {x} is closed in both topologies in a pairwise TD∗ bitopological space (X, 1, 2). 

There is an open neighborhood Ui of x in i that meets the criterion, since the space (X, 1, 2) has been 

thought of as pairwise TD∗. Ui is equal to {x} if and only if (i cl{x}) is equal to {x}, and Ui is equal to {x} 

if and only if ({x}i ′) is equal to ϕ. 

 

The derived set of every element is closed in both topologies since x is not a member of i cl({x}i ′). 

The 6.2.5 Theorem For any pair of different elements x and y in a pairwise TD∗ bitopological space (X, 1, 

2), there is an open set Pi in i such that P1 ⋂ P2 contains either just x but not y or only y but not x, where 

i ≠ j and j is a member of {1, 2}. 

 

The evidence. With two unique elements x and y in the pairwise TD∗ bitopological space (X, 1, 2), there 

exists an i-th neighborhood Ui of x in X with i ∈ {1, 2} and the condition Ui - {x} = P1 ⋂ P2 holds, meaning 

that every Pi is open in i and none of them contain x. Two situations have now emerged: 

First case: x ∈ U1 ⋂ U2, but y ∉ U1 ⋂ U2 and we obtain the result if y ∉ Ui for every i in the set {1, 2}. 

 

The second case is when y is a member of Ui for either i = 1 or i = 2, and according to the pairwise TD∗ axiom, 

Ui - {x} = P1 ⋂ P2. Here, P1 and P2 are 1 and 2 neighbourhoods of y, respectively, that do not contain x. 

 

1.4 New Topology Induced on a Bitopological Space 

 

Every time a new class of closed or open sets is introduced, and topologies on those sets are subsequently 

introduced as well, the subject of topological spaces and bitopological spaces is enhanced. When novel 

topologies are introduced, new dimensions are opened up for the study of topological characteristics under 

special circumstances. To induce a new topology on a bitopological space, we define a new closure operator 

in this section. 

 

Section 6.3.1 Definition Look at the bitopological space (X, 1, 2) as an example. The function R is defined 

on the interval (1, 2): The collection of all subsets of X is denoted as P{X}, where P{X} is defined as R (1, 

2) (A) = {y ∈ X | ∀ U ∈ 1 and V 

∈ 2 | y ∈ U - V, (U - V) ⋂ A ≠ ϕ. 

 

Meaning 6.3.2 A bitopological space (X, 1, 2) also allows for the definition of the function R (1, 2) as: 

 

The following demonstrates that the two interpretations of the R (1, 2) function are interchangeable: 

 

Assume that for every x in {y in X | ∀ U ∈ 1 and V ∈ 2 |, where y is in U - V, the product of (U - V) and 

A does not equal ϕ. 

 

So, in the ∀1 area, For every neighborhood X in 2 and open set V that does not contain x, we get U ⋂ (X 

- V) ⋂ A ≠ ϕ. U of x and (∀2) closed sets F that include x, where U ⋂ F ⋂ A ≠ ϕ. 

Specifically, for every x ∈ {y ∈ X | ∀ U ∈ 1 | y ∈ U, 2cl{y}⋂ A ⋂ U ≠ ϕ}, we have that U ⋂ A ⋂ 2cl{y} 

≠ ϕ. 

For any x in the set {y ∈ X | ∀ U ∈ 1 | y ∈ U, 2cl{y} ⋂ A ⋂ U ≠ ϕ}, we have cl{x} ⋂ A ⋂ U ≠ ϕ ∀ 1 

neighborhood. Union of x. 
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The intersection of all 2 closed subsets of X that contain x is 2 cl{x}, which is true for all 1 neighborhood. 

The neighborhood of x and the closed set F that contains x for any n ∈ 1 where (U ⋂ F) ⋂ A ≠ ϕ. The 

neighborhood of x in U and the open set V that contains x in ∀ 1 is denoted by (U ⋂ (X - V)) ⋂ A ≠ ϕ. 

Given an open set V that contains x and a union U of x, where x ∈ 1, we have that (U - V) ⋂ A ≠ ϕ. Then, 

for any x in the set {y in X | ∀ U in 1 and V in 2, where y is in U - V, we have that (U - V) ⋂ A ≠ ϕ. 

 

Proposition 6.3.3 R(1, 2) is an operator that asserts the following: 

 

(i) A belongs to the set R(1, 2), (A) is a subset of 1 cl(A), and A is a subset of P(X) (ii)A, B ⊆ P(X) if 

and only if (iii) R(1, 2) (A ⋂ B) ⊆ R(1, 2) (A) ⋂ R(1, 2) (B) and 

(iv) A ⌊ B ⟹ R(1, 2) (B) ⊆ R(1, 2) (A) ⌈ A, B ⊆ P(X)The set (v) R(1, 2) This means that the product of 

R(1, 2) and A is equal to R(1, 2) plus R(1, 2) plus B. 

 

The evidence. (I) Assume that x is a member of U - V and that (U - V) ⋂ A = ϕ, then there exists a set U ⊈ 
R(1, 2) and a set V ↈ R(2,) that meet this condition. 

 

If x ∈ A then x ∈ U ⋂ A whereas x ∉ V ⋂ A. ⟹ (U – V) ⋂ A ≠ ϕ which is a contradiction. 

 

*x is an element of A. 

 

Consequently, A is a subset of R(1, 2) that contains A. 

 

Moreover, if x is a subset of 1 cl(A), then there is an open set U ⊈1 that is both disjoint from A and 

contains x. 

 

We obtain x ∈ U - V and (U - V) ⋂ A = ϕ by assuming that X - 2 cl(U) = V ∈2. ⟹ 

x belongs to the set R(1, 2) in the set A. 

 

Let x be a real number in the interval [1, 2] (A) and B be a subset of A. Under these circumstances, one can 

always identify U ∈ 1 and V ∈ 2 such that x ∈ U - V and (U 

- V) ⋂ A = ϕ. 

For every x ∈ R(1, 2), where A ⋂ B, the function ϕ(U - V) ⋂ A ⋂ B is defined. On the other hand, x belongs 

to R(1, 2) (B) and B ⊆ A. 

From (ii), we may deduce that R(1, 2) (A ⋂ B) ⊆ R(1, 2) (A) and R(1, 2) (A ⋂ B) ⊆ 

R(1, 2) (B) since (A ⋂ B) ⊆ A and (A ⋂ B) ⊆ B, respectively. If A is a subset of B, then R(1, 2) (A) is a 

subset of R(1, 2) (B). 

Then, according to (i), R(1, 2) (A) is equal to R(1, 2) (R(1, 2) (A)). In this case, let x be a real number in 

the interval [1, 2] (A). 

 

We can locate open sets U and V in 1 and 2 that meet the following condition: x is in U - V and (U - V) 

is not equal to ϕ in A. 

 

We assert that ϕ is equal to (U - V) ⋂ R (1, 2) (A). 

 

The set of real numbers between 1 and 2, denoted as (U - V), is not equal to ϕ. 

 

Our assumption remains the same: X contains an element y belonging to U ⋂ R (1, 2) 
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(A) and y ∉ V ⋂ R (1, 2) (A), without limiting our generality. 

 

⟹ y ∈ U ∈ 1, y ∈ R (1, 2) (A) and y ∉ V ∈ 2. 

 

It is contradictory because for any y in R(1, 2), there is an A such that (U - V) ⋂ A ≠ ϕ. 

 

The set R(1,2)(R(1,2)(A)) is equal to the set R(1,2)(A). 

 

In order to establish this aspect, we employ the second interpretation of R (1, 2) (A). A ⊆ (A ⋃ B) and B ⊆ 
(A ⋃ B) are equivalent. 

According to (ii), ⟹ R (1, 2) (A) ⋃ R (1, 2) (B) ⊆ R (1, 2) (A ⋃ B), and R (1, 2) (B) 

⊆ R (1, 2) (A ⋃ B). 

 

Allow x to be a member of R(1, 2) (A) and R(1, 2) (B). 

 

The variables x and y are both contained in the set of real numbers (1, 2) in both A and B. 

U and V are subsets of 1 that contain x and meet the given criteria. ϕ = 2cl{x} ⋂ B 

⋂ V, where A is a subset of U. 

 

With E being equal to U ⋂ V, we can deduce that ϕ is equal to 2 cl{x} for every x ∈ 

R(1, 2) where A ⋃ B. 

 

If A is a subset of B, then R(1, 2) (A) is a subset of R(1, 2) (B). So, R(1, 2) (A ⋃ B) is equal to R(1, 2) (A) ⋃ 
R(1, 2) (B). 

The R(1, 2) operator meets all the requirements of Kuratowski's closure operator on a 

bitopological space, as shown by the previous theorem. Because of this, we set R(1, 2) to the following 

definition: 

Meaning 6.3.4 A set A is considered to be R(1, 2) closed in the bitopological space (X, 1, 2) if and only 

if R(1, 2)(A) = A. 

It is easy to deduce from Theorem 6.3.3 (i) that every 1 closed set is also a R(1, 2) closed set. As 

demonstrated below, though, even a 2 open set is closed in R(1, 2), which is an intriguing fact to keep in 

mind. 

 

Since (X - A) is a 2 closed set, for any ∀ x ∈ (X - A), 2 cl{x} ⊆ (X - A). A is closed in R(1, 2) if and only 

if 2 cl{x} ⋂ A ⋂ U = ϕ ∀ U ∈  1. 

Another closure operator R(2, 1) can be defined in the same way by switching the values of 1 and 2. The 

following is a definition of the R(2, 1) operator for the purpose of clarity: 

 

Definition 6.3.5 Take into account a bitopological space (X, 1, 2) and make a function R(2,1): R(2, 1) (A) 

= {y ∈ X | ∀ U ∈ 2 and V ∈ 1 | y ∈ U - V, (U - V) ⋂ A ≠ ϕ } | ∀ A ⊆ X, where U and V are subsets of 

1. 

The following is an alternative way to define the R(2, 1) operator: The following is an alternative way to define 

the R(2, 1) operator: 

In both cases, the meaning of the R(2, 1) operator is the same, as is readily apparent. In addition, this operator 
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can be used to close a loop. A subset of a set X in a bitopological space (X, 1, 2) can be defined as the 

closure of R(2, 1) in the following way: 

 

Meaning 6.3.7 R(2,1) closed means that A is contained within X in the bitopological space (X, 1, 2). 

A subset A of X in the bitopological space (X, 1, 2) is obviously closed in R(2, 1) if and only if A is either 

2 closed or 1 open. 

In addition, a new closure operator R in the bitopological space (X, 1, 2) is generated from the closure 

operators given above and exhibits some intriguing characteristics. Here is the definition of this new closure 

operator: 

 

Definition 6.3.8 R closedness is defined in a bitopological space (X, 1, 2) as the condition that A ⊆ X is 

equal to R(1, 2)(A) or R(1, 2)(A).The set A is said to be R closed if for any x ∈ A, there exists a set U1, U2 

∈ 1 1 and a set V1, V2 ∈  2 that meet the following condition: x ∈ U1 - V1 and x ∈ V2 - U2 with (U1 - 

V1 ) ⋂ A = ϕ and (U2 - V2) ⋂ A = ϕ. Alternatively, A can be said to be R closed if for any x ∉ A, there exists 

a set U ∈ 1 and a set V ∈ 2 such that x ∈ U and x ∈ V and ∈ 2 cl{x}⋂ A ⋂ U = ϕ = 2. 

 

Theorem 6.3.9 states that cl{x} is ⋂ A ⋂ V. The following conditions are met by the R operator: 

 

The evidence. (i) Assuming x is included in R(A), we may find U1, U2 in 1 and V1, V2 in 2 that meet the 

following condition: x is in U1 - V1 and x is in V2 - U2 with (U1 - V1 ) ⋂ A =. and (U2 - V2) ⋂ A = . 

Since x is in both U1 and V1 subsets of A, we conclude that (U1 - V1) subsets of A do not contain , and hence 

that x is a member of A. Thereby, A is a subset of R(A). 

 

Now, for any i in the interval [1, 2], there is a neighborhood of x denoted by Ui in the interval [1, 2] such that 

Ui ⋂ A =   . We obtain x ∉ R(A) by taking X - j cl(Ui) = Uj ∈ j, | j ∈ {1, 2} | i ≠ j. 

(ii) Assume that B is a subset of A and that x is a member of R(A). Then, for every U1, U2 ∈ 1 and 

every V1, V2 ∈ 2, there is an element x such that x is in U1 - V1 and in V2 - U2, and for every (U1 - V1) 

⋂ A =  and (U2 - V2) ⋂ A = . 

⟹ (U1 - V1 ) ⋂ B =  and (U2 - V2) ⋂ A ⋂ B =  as B is contained in A. Similarly, (U2 - V2) ⋂ B = . 

The set R(B) is empty of x. 

 

(iii) According to (ii), R(A ⋂ B) ⊆ R(A) and R(A ⋂ B) ⊆ R(B). Since (A ⋂ B) ⊆ A and (A ⋂ B) ⊆ B, 

we can deduce that R(A ⋂ B) ⊆ R(A) ⋂ R(B). (iv) R(A) ⊆ R(R(A)) is clearly shown by (i). For every x 

∉R(A), there exists a set U1, U2∈1 and a set V1, V2 ∈ 2 that meet the following condition: x ∈ U1 - V1 

and x ∈ V2 - U2 such that (U1 - V1) ⋂ A =  and (U2 - V2) ⋂ A =. 

If (U1 - V1) ⋂ R(A) =, then (U2 - V2) ⋂ R(A) = , too, according to our assertion. 

 

(U1 - V1) ⋂ R(A) ≠  and (U2 - V2) ⋂ R(A) ≠  are elements of X such that y ∈ U1 

⋂ R(A) but y ∉ V1 ⋂ R(A) y ∈ U1 ∈  1, y ∈   R(A) and y ∉ V1 ∈  2 are elements of X. 

 

However, there is a contradiction because (U1 - V1) ⋂ A ≠ , since y is a real number and belongs to R(A). 

 

⟹ The product of R and R(A) is equal to R(A). 
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Similarly, we can demonstrate that the set A is not empty and that (U2 - V2) is a subset of R(R(A)) with 

respect to x and R(A) is a subset of R(R(A)) for all v. We apply the second definition of R(A) to show this 

section. 

 

R(A) ⋃ R(B) ⊆ R(A ⋃ B) is evident from (ii) onwards. 

 

On the other hand, consider x as belonging to R(A) ⋃ R(B). If U, P ∈ 1 and V, Q ∈ 

2 include x, then 2 cl{x}⋂ A ⋂ U =  = 1 cl{x}⋂ A ⋂ V and 2 cl{x⋂ B ⋂ P = 

 =  1 cl{x}⋂ B ⋂ P. 

 

Take into consideration E as U ⋂ P and F as V ⋂ Q. 

Think about E as U ⊂ P and F as V ⋂ Q, where x ∉ R(A ⋃ B). A ⋃ B ⟹ R(A) ⋃ R(B) is invertible. 

A product of R(A) and R(B) is equal to R(A) plus R(B). 

 

Consequently, a topology on (X, 1, 2) is defined by the R operator since it meets all the requirements of 

Kuratowski′s closure operator. The relevant topological space is (X ,R), and we represent this topology as 

R. R is defined as follows: 

Understanding 6.3.10 Think about the bitopological space (X, 1, 2) and the set A that is a subset of X. If 

A is a subset of R and for every x in A there is a2-open set U that contains x and a 2-open set V that 

contains x that meet the following condition: x ∈ (2 cl{x} ⋂ U) ⋃ (1 cl{x} ⋂ V) ⊆ A, then A is a subset 

of R. 

In addition, the topologies defined by operators R(1, 2) and R(2, 1) on a bitopological space (X, 1, 2) are 

finer than, and equal to, 1 and 2, respectively, since they both meet the requirements of Kuratowski′s 

closure operator. 

 

The following conclusions are also derived from the preceding discussion: 

 

For every bitopological space (X, 1, 2), let A be a subset of X. Next, in the event that; 

 

• If A is open in 1, then it is also open in R(1, 2) and closed in R(2, 1). 

• If A is open on 2 and closed on R(1,2), then A is also open on R(2, 1). 

• A is open in R(2,1) and closed in R(1,2) if and only if A is 1 closed. 

• A is open in R(1, 2) and closed in R(2, 1) if and only if A is 2 closed. 

 

A subset A of X in a bitopological space (X, 1, 2) is considered open and closed in 

R if it is open in both topologies or closed in both 1 and 2. This conclusion is supported by the results 

given above. 

 

First, think about the following set of subsets of X: 

 

The set B(1, 2) is defined as the identity matrix {U - V | U ∈ 2 and V ∈1}. 

 

The function B(2, 1) is defined as the identity matrix {U - V | U ∈ 1 and V ∈ 2}. 
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Assuming U is in 1 and V is in 2, the equation B is equal to (U - V) multiplied by (V- U). 

 

Then, the topologies produced by the R(2,1), R(2,1), and B operators, respectively, have B(1, 2), B(2,1), and 

B as their bases. 

 

Case in point 6.3.10 An assortment of positive integers can be represented by the letter P. With m ≥ n, let An 

be the set of all elements in X. Define 1 as the set of all analytic functions on X where n ≥ 1 and 2 as the 

set of all discrete topologies on X. A discrete topology also applies to (P, R). 

If R cl(A) = X, then we say that set A ⊆ X is R-dense (Definition 6.3.12). Here, X is referred to as the R-hull 

of A. 

 

Proposition 6.3.13. In a bitopological space (X, 1, 2), if a set A ⊆ X is R-dense, then for every i and j 

∈ {1, 2}, we have that (Ui - Vj) ⋂ A ≠  or (Vj - Ui) ⋂ A ≠ . 

The evidence. With U ∈ R and V ∈ R, we can write (U - V) as (V - U). A overlaps with every R-open set 

because it is R-dense. 

A ⋂ ((U - V) ≠  or A ⋂ (V- U)) ≠  is an example of this. 

 

Purpose of 6.3.14 In a bitopological space (X, 1, 2), a bi open filter F is a set of non-empty subsets 

of X that have the given characteristics. 

 

(i) For every i in the set {1, 2}, F is greater than or equal to 1 and F is less than or not equal to i. 

(ii) For any i from 1 to 2, there exists an element F in the set F such that E ⋂ F 

∈  i. 

(iii) G ∈ F and G ⊆ H with G, H ∈ i ⟹ H ∈ F ∀ i ∈ {1, 2} 

 

Proposition 6.3.15 When two distinct elements in X have distinct biopen filters in Y, we say that the space Y 

is dense in X and that X is a pairwise T0 bitopological space (X, 1, 2). 

Proposition 6.3.15 When two distinct elements in X have distinct biopen filters in Y, we say that the space Y 

is dense in X and that X is a pairwise T0 bitopological space (X, 1, 2). 

Assumption 6.3.16 The induced topological space (X, R) is always T1 if (X, 1 ,2) is a pairwise T0 

bitopological space. 
 

The evidence. Consider two distinct elements p and q of the set X. It is enough to prove that R cl{p} = {p} 

for all p in X in order to establish that (X, R) is a topological space, as a space is considered to be T1 if and 

only if the closure of any singleton with respect to its topology is the singleton itself. The theorem is proved 

by contradiction, meaning that the bitopological space (X, 1, 2) is not pairwise T0 if the induced topology 

is not T1. Assume that q is an element of X distinct from p, and that it belongs to the set R cl{p}. 
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Additionally, for every q, every r neighbourhood contains p, which contradicts the statement that (X, 1, 2) 

is pairwise T0. This is because {p} ⋂ Uq ≠ ∀1 neighborhood Uq and {p} ⋂ Vq ≠ ∀2 neighbourhood of 

Vq of q. 

The result is that the induced topological space (X, R) is T1 if the bitopological space (X1, 2) is pairwise 

T0. 

1.5 Relation Between TD∗ and R 

 

Presumption 6.4.1 If the pairwise TD∗ of two bitopological spaces (X, 1, 2) holds, then the topological 

space (X,  R) is discrete. 

The evidence. Assume that x is a subset of X and that the bitopological space (X, 1, 

2) is pairwise TD∗. It is sufficient to demonstrate that every set (X - {x}) or every singleton {x} is open in 

R in order to prove that (X, R) is discrete. 

Every time there is a neighborhood Ui of y and a neighbourhood Uj of y, the definition of R cl(X - {x}) is 

{y ∈ X | i cl{y} ⋂ (X - {x}) ⋂ Uj ≠  and  j cl{y} ⋂ (X - {x}) ⋂ Ui ≠  }. 

If x is in the set R cl(X - {x}), then for every i neighbourhood Ui of x and every j neighbourhood Uj of x, i 

cl{x} ⋂ (X - {x}) ⋂ Uj ≠  and  j cl{x} ⋂ (X - {x}) ⋂ Ui ≠ . Assume that z is an element of i cl{x}, z 

is not equal to x, and z is a member of Uj, and that z is a subset of (X - {x}) ⋂ Uj. 

 

X being pairwise TD∗ means that x has a neighborhood Uj where P1 ⋂ P2 and no Pi in i contains x, as Uj 

- {x}= P1 ⋂ P2. 

"Pi" is a neighborhood of z that does not contain x if z is a member of Uj. z is not equal to ŀi times cl{x}. 

Either {x} is an open set in R or the set X - {x} is closed in R. The set (X, R) is discrete because every 

singleton is open in R. 

The 6.4.2 Theorem If the set (X, R) is discrete and all derivative sets are closed in both topologies in a 

bitopological space (X, 1, 2), then (X, 1, 2) is pairwise TD∗. 

The evidence. Every singleton {x} in X is R-closed if the induced topological space (X, R) in a 

bitopological space (X, 1, 2) is discrete. 

(X - {x}) is equal to R cl(X - {x}). 

 

⟹ For any i ≠ j in the set {1,2}, there exists a neighborhood Ui of x such that j cl{x} ⋂ (X - {x}). 

Therefore, Ui equals . 
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Where Ui = {x} and ⟹j cl{x} are not equal. It is also closed under the provided condition. 

A neighborhood exists for x. In i, vi such that {x}i ′ Thus, vi is equal to . If i cl{x} ⋂ Vi = {x}, then x 

has a neighborhood Vi in i. 

We obtain Wi ⋂i cl{x} ⋃j cl{x}) = {x} by assuming that Ui ⋂ Vi = Wi. 

 

The function X - (Wi - {x}) equals (X - Wi). (X - Wi) is equal to {x}. ** (i cl{x}) The equation (j cl{x}) 

is equal to ((X - Wi) ⋃i cl{x}) ⋃j cl{x}). 

where Fi is equal to (X - Wi), and ⟹ X - (Wi - {x}) = Fi ⋃ Fj. The functions Fj and 

i cl{x} are defined for every i and j ∈ {1,2}, where i is not equal to j. 

 

The output is (X - (Fi ⋴ Fj)) = (X - Fi) when the inequality (⟹ Wi - {x}) is considered. For every i, j ∈ {1, 

2}, and all values of i ≠ j, the absolute value of X minus Fj is equal to Pi times Pj. 

 

Pairwise TD∗ is ⟹ (X, 1, 2). 

 

Proposition 6.4.3 (X, 1, 2) is pairwise TD∗ in a pairwise regular bitopological space (X, 1, 2) if (X, R) 

is discrete. 

 

Obejectives of the study:- 

 
 

1. To generalized semi-open pre-open sets, g-open sets tec and their bitopolocical 

analogs. 

 

2. To construct new separation axioms in topological and bitoplogical space. 

 

 

1.6 Conclusion 

Objective 1. To generalized semi-open pre-open sets, g-open sets tec and their bitopolocical analogs. 

 

Exploring generalized semi-open sets, pre-open sets, and their bitopological counterparts will be the first leg 

of this inquiry. Determining the intricate network of mathematical patterns that transcend the boundaries of 

the ordinary is the objective of this inquiry. Investigated here is the concept of g-open sets, a generalization 

that goes beyond classical openness to allow a more nuanced comprehension of spatial interactions. The 

emphasis moves to the comparable structures that might be present in dual space when we broaden our study 

to encompass bitopology. This exploration of generalized semi-open and pre-open sets explores uncharted 

terrain in an effort to understand the intricate patterns that emerge when traditional ideas are transformed and 

expanded to fit the dynamic nature of mathematical abstraction. There will be a lot more chapters in this 

quest. In addition to deepening our understanding of the theory underlying these concepts, our goal in 

conducting this inquiry is to uncover their real-world implications and applications in the context of 

mathematical analysis and problem-solving. 

 

Objective 2. To construct new separation axioms in topological and bitoplogical space. 

Pursuing novel separation axioms that expand mathematical topology's horizons is the goal of this study. It 

accomplishes this by venturing into topological and bitopological space, the uncharted territory of 

inventiveness. To get there, we'll have to figure out how to differentiate between locations inside these spaces 

using new standards. The intricate structure of spatial relationships can be better understood with the help of 

mailto:editor@ijermt.org
http://www.ijermt.org/


 

  International Journal of Engineering Research & Management Technology                  ISSN: 2348-4039 

Email:editor@ijermt.org                         Volume 8, Issue-3 May-June 2021                        www.ijermt.org 

Copyright@ijermt.org                                                                                                                                Page 50  

new insights made possible by this. As part of this research, which requires analytical and creative thinking, 

we will rethink and expand upon traditional notions to create a more sophisticated system for classifying 

places. Creating these novel separation axioms enhances the subject's theoretical attractiveness and may lead 

to useful applications. The foundational structures of many mathematical landscapes can be explored and 

understood through the prism of these axioms. An expansion of topology's theoretical foundations and new 

approaches to solving practical problems within the broader context of mathematical analysis are both 

anticipated outcomes of this effort. In order to achieve this, we will venture into uncharted territory. 
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